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Dark Mass Density

The gravitational evidence for dark matter allow for a determination of the dark matter
mass density, both globally ( ) :
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WIMP-Nucleus Recoil

Inelastic DM (Smith & Weiner) requires the WIMP to recoil inelastically
against the nucleus.

Elastic Scattering
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Inelastic DM (Smith & Weiner) requires the WIMP to recoil inelastically
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WIMP-Nucleus Recoil

Inelastic DM (Smith & Weiner) requires the WIMP to recoil inelastically
against the nucleus.
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Inelastic Transitions
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Inelastic Transitions
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1)  Light element experiments may not see anything.
2)  The spectrum of events has a maximum.
3)  Probing the tail of the Boltzmann distribution ---> large modulations.
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Inelastic Transitions
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Fit to DAMA

The differential event rate is given by,

dR PxTnQ” > fv)
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X f (‘U) WIMP velocity distribution
Hne WIMP-nucleon reduced mass
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Fit to DAMA

The differential event rate is given by,
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Biggest Targets

The biggest effective targets available for us to capture WIMPs are the Earth and

the Sun:

Capture in the Sun

KIAS

Itay Yavin




Biggest Targets

The biggest effective targets available for us to capture WIMPs are the Earth and

the Sun:

Capture in the Sun

KIAS

Itay Yavin




Biggest Targets

The biggest effective targets available for us to capture WIMPs are the Earth and
the Sun:

No good! Heaviest target is iron, but if WIMP can scatter against
iron efficiently, it would have been seen already in germanium
based experiments (CDMS).
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Good! As the WIMP falls towards the sun, it gains enough kinetic
energy which allows it to scatter against almost any element in the

sun (except for helium and hydrogen)
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Biggest Targets

The biggest effective targets available for us to capture WIMPs are the Earth and
the Sun:

No good! Heaviest target is iron, but if WIMP can scatter against
iron efficiently, it would have been seen already in germanium
based experiments (CDMS).

Good! As the WIMP falls towards the sun, it gains enough kinetic
energy which allows it to scatter against almost any element in the
sun (except for helium and hydrogen)

20t

1 iron

[a—
n
T

1 oxyge

I'n
1 carbon

. -3
Mass Density (MgunRsun )
n ) '

P ———

04 06 _ . 0 02 04 06
m (units of M,,,) Radius (Rsua)

Capture in the Sun Itay Yavin



Detecting the Captured WIMPs

After they get captured, the WIMPs might eventually find each other and
annihilate. If the annihilation products contain neutrinos, we can try to detect this
flux coming from the Sun:

Underground Detectors: Observing the incoming neutrino through its conversion into
a charged lepton and the subsequent .

Neutrino Telescopes: A muon-neutrino converts into a muon in the rock (or ice, or
water) below the detector. The muon 1s subsequently detected with a large sparse array
(Ice-Cube, Antares).
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How to Compute Muon Flux

The computation can be separated into logically disjoint modules, as follows:
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How to Compute Muon Flux
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Capture Rate - Back of the Envelope

Capture in the Sun KIAS Itay Yavin




Capture Rate - Back of the Envelope

o 4m Ny, (mme

(my +mn)? \ GeV? ) &on \

o, ~ 1070 cm?

Capture in the Sun Itay Yavin



Capture Rate - Back of the Envelope

o 4m Ny, (mme

(my +mn)? \ GeV? ) &on \

—40 2
o.. ~ 10 cm
~ A4Jn "

Capture in the Sun Itay Yavin



Capture Rate - Back of the Envelope

4m Ny, (mme

o =

GeV?2 ) Q%on \

o, ~ 1070 cm?

(my +mn)?

~ Ao,

So, heavy elements, although less abundant are very important!!!
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Capture Rate - Back of the Envelope
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Capture Rate - Back of the Envelope
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So, heavy elements, although less abundant are very important!!!
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Capture Rate

The capture rate per shell of radius 7, 1s given by,

/duw

Capture in the Sun Itay Yavin



Capture Rate

The capture rate per shell of radius 7, 1s given by, / w? (r) = V2 () + u?

ac f(u)
i /duuw(?") (onw(r)Peqp)

P,,, is the probability that a the WIMP will scatter to LESS than escape velocity, v(r) !
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. —— Nuclear recoil energy
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p
P cap — v,

E*ma:;c — Ermln
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Capture Rate

The capture rate per shell of radius 7, 1s given by, / w? (r) = V2 () + u?
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Nuclear Form Factors

For heavier elements, the WIMP no longer coherently scatters against the entire
nucleus. This effect is captured by including a nuclear form factor,

—E/E;

€
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Which Elements Participate

m (units of My,,)

M, =500 GeV  uc = 220 km/s
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Capture Rate

= =1 k¥

=== =150 ke

s §=200 keV

m— §=250 ke

T100 200 500 1000 2000
M, (GeV)

It is easier to capture because some of the energy goes to excitation. Also, form-factor
suppression is a little milder, especially for iron.
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Annihilation Rate

The evolution of the WIMP population is governed by the equation,

capture rate
N =C'— CsN?

‘\ annihilation rate per WIMP?
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Annihilation Rate

The evolution of the WIMP population is governed by the equation,

capture rate
N =C'— CsN?

‘\ annihilation rate per WIMP?
Which can be solved exactly,

1
['p = EO tanh?(t/7e,)
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Annihilation Rate

The evolution of the WIMP population is governed by the equation,

capture rate
N =C'— CsN?

‘\ annihilation rate per WIMP?
Which can be solved exactly,

1 5 Long time 1
L4 = ECtanh (t/Teq) » 4= 50

\Teq = (CC4) /2
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Annihilation Rate

The evolution of the WIMP population is governed by the equation,

capture rate
N =C'— CsN?

‘\ annihilation rate per WIMP?
Which can be solved exactly,

1 5 Long time 1
L4 = ECtanh (t/Teq) » 4= 50

\Teq = (CC4) /2

Is the solar lifetime long enough compared with the equilibrium time scale? If not, the
signal is strongly reduced.
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Equilibrium Time

_ fdgfr n(’r)g (oAv)
(f & n(r))’

C'4 —my (r) /T

And usually, 7 (T‘) = npe
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Equilibrium Time

—my d(r) /T
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‘ 2
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Assuming the WIMPs had enough time to
<g- A 7_;} thermalize with the matter in the sun

And usually, ﬂ.-('?‘) = Nnpe

(2m)3/ 213,
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Equilibrium Time

—my d(r) /T
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Assuming the WIMPs had enough time to
<g- A 7_;} thermalize with the matter in the sun

(2m)3/ 213,

And usually, ﬂ.-('?‘) = Nnpe
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Equilibrium Time

_HE}L {11.*;:[ T‘)J,-"“I-I

O — [ dr n(r)? (oav)
- ([ d&r 'n..(-r))Q

Assuming the WIMPs had enough time to
.{ o 4-1;} thermalize with the matter in the sun

(Q’H)BJIIQ?‘B

th

And usually, ﬂ.-('?‘) = Nnpe

- / - | / —_ L9 3/92
C 1/2 (TAV) V2 77 5108 em\ ™
1025 sec—1 3 % 10726 c¢m3 sec—! T,

So, equilibrium has been reached long ago, and the signal is full strength.

But, if the scattering 1s inelastic the WIMPs cannot thermalize!!! We need to compute
the resulting density
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Orbits

Henon (1959) found closed form solutions for the orbits of the following potential:

U(r) = GMaom, - 2b
"= QbRCJ b + fbg + T"Z

The potential in the sun can be fit fairly well to this potential,
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Density

The WIMP will keep on colliding until it lost enough energy so it no longer have
enough energy to undergo an inelastic transition.

Wanonss
NN AN

-10L
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Density

The WIMP will keep on colliding until it lost enough energy so it no longer have
enough energy to undergo an inelastic transition.
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Muon Yield

To compute the resulting muon yield, we used DarkSUSY.
The inputs are: capture rate and annihilation channel.
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Muon Yield

To compute the resulting muon yield, we used DarkSUSY.
The inputs are: capture rate and annihilation channel.
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Excluded Annihilation Channels

So, current bounds from Super-K, already allow us to place extremely stringent
bounds on the annihilation channels of any such model.
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Reaction 1

Well, I didn’t believe DAMA'’s
results to begin with so... pfif




Reaction 2

If you love the MSSM, then you
would take 1t as a sign that iDM
models are ruled out.




Reaction 3

Conservatively, we can say:
If iDM 1s ever veritfied, then we
know that DM annihilates 1n a very

peculiar way.
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Dark Gauge Groups?

Suppose DM is charged under some new dark abelian group:

1
L=xv"D,x+ Mxx + KXhXh + h.c.

+|D,h2 = V(h) - }1 Fun FH (h) = GeV

(h)*

Coupling to the SM can be achieved through kinetic mixing with hypercharge. Such a
scenario will also yield the electron/positron excesses seen in PAMELA and possibly
the CMB haze.
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Conclusions

 Inelastic DM models with generic couplings to the
SM are excluded by neutrino telescopes.
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Conclusions

 Inelastic DM models with generic couplings to the
SM are excluded by neutrino telescopes.

If DM 1s charged under some new abelian groups,
PAMELA, ATIC and a few other observations can
be accommodated. Inelastic scattering arises
naturally and 1s NOT excluded by the present
considerations.
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